
 ISSUE 5 | December 2024

2nd
PART

26

 Simulation of an Intercloud Environment for Dynamic
Resource Allocation and Load Balancing

Simulation of an Intercloud Environment for Dynamic

Resource Allocation and Load Balancing

Khalid Abdelkader, Rawda Aki, Nabil Elsherif

Computer Engineering

Higher Institute of Science and Technology

Ghadames, Libya

Email: Abdelkader.khalid@gmail.com

Tel: 0917329339

Abstract

The rapid growth of cloud computing has given rise to Intercloud

environments, where resources are shared among different cloud providers

to ensure scalability, fault tolerance, and optimal resource utilization. This

paper presents a simulation of an Intercloud environment in which

dynamic resource allocation, load balancing, data transfer, and fault

tolerance are modeled. The system distributes user requests across

multiple cloud providers, simulates the transfer of data between clouds,

and models resource failures and recovery strategies. The simulation also

introduces a dynamic load balancing algorithm and demonstrates how

resource allocation adapts under varying loads. The results show that the

system successfully distributes loads, adapts to changing resource

demands, and ensures data integrity across clouds. The simulation serves

as a basis for further research in improving cloud interoperability and

dynamic resource management.

Keywords: Cloud, Intercloud, Fault tolerance, Resource allocation,

workload
 :الملخص

، حيث يتم تقاسم Intercloud أدى النمو السريع للحوسبة السحابية إلى ظهور بيئات
وتحمل التوسع قابلية لضمان المختلفين السحابية الخدمات موفري بين الموارد
الأخطاء والاستخدام الأمثل للموارد. تقدم هذه الورقة محاكاة للبيئة السحابية التي يتم

 وتحمل فيها تصميم التخصيص الديناميكي للموارد، وموازنة التحميل، ونقل البيانات،

 ISSUE 5 | December 2024

2nd
PART

27

 Simulation of an Intercloud Environment for Dynamic
Resource Allocation and Load Balancing

الخدمات موفري من العديد عبر المستخدم طلبات بتوزيع النظام يقوم الخطأ.
الموارد لفشل نماذج ويضع السحابات، بين البيانات نقل ويحاكي السحابية،
واستراتيجيات الاسترداد. تقدم المحاكاة أيضًا خوارزمية موازنة التحميل الديناميكية

مال مختلفة. وتظهر النتائج أن وتوضح كيفية تكيف تخصيص الموارد في ظل أح
النظام يوزع الأحمال بنجاح، ويتكيف مع متطلبات الموارد المتغيرة، ويضمن سلامة
البيانات عبر السحابات. تعمل المحاكاة كأساس لمزيد من البحث في تحسين إمكانية

دارة الموارد الديناميكية .التشغيل البيني السحابي وا

، التسامح مع الخطأ، تخصيص الموارد، Intercloudالسحابة، الكلمات المفتاحية:
 عبء العمل

Introduction

Cloud computing [1] [2] has revolutionized the IT industry, providing on-

demand access to resources such as computing power, storage, and

networking. However, as cloud services become more widely adopted the

need for Intercloud environments have emerged [3]. An Intercloud is a

network of interconnected cloud providers that can share resources and

services, offering greater scalability and fault tolerance. In such a

distributed environment, load balancing, dynamic resource allocation, and

data transfer between clouds become crucial for ensuring the efficiency

and reliability of services.

This paper presents a simulation model for an Intercloud environment

called Intercloud Environment simulator (ICES), focusing on dynamic

load balancing, resource allocation, and data transfer between multiple

cloud providers. The ICES also includes mechanisms for fault tolerance,

ensuring that the system can recover from provider failures and continue

to operate effectively. By simulating multiple user requests and varying

cloud capacities, this work aims to provide insights into the behavior of an

Intercloud system under different load conditions and failure scenarios.

 ISSUE 5 | December 2024

2nd
PART

28

 Simulation of an Intercloud Environment for Dynamic
Resource Allocation and Load Balancing

Related Works

Several studies have explored the concept of Interclouds and multi-cloud

environments. One notable approach is the development of hybrid cloud

architectures, where private and public clouds interact to provide seamless

access to resources. In these environments, managing load balancing and

resource allocation is crucial for optimal performance. For example, the

author in [4] proposed hybrid cloud architecture for resource allocation

using a multi-agent system. Similarly, in [5], authors proposed a load

balancing algorithm for multi-cloud environments, which dynamically

allocates resources based on user requests

Furthermore, fault tolerance in Intercloud systems has been studied in

various contexts. A recent study by [6] developed a fault-tolerant

architecture for Intercloud systems that employs data replication and

recovery strategies to mitigate the impact of failures.

In [7], authors introduce a heuristic method based on particle swarm

algorithm [8] for tasks’ scheduling on distributed environment resources.

The model considers the cost of data transfer and the computational cost.

The proposed algorithm optimizes dynamic mapping tasks to resources

using classical particle swarm optimization algorithm and ultimately

balances the system loads. In [9], authors explored new optimization

algorithms for resource allocation and further proposed a hybrid algorithm

for load balancing which can well contribute in maximizing the throughput

of the cloud provider's network. However, while these works address

important aspects of Intercloud systems, there is still a need for

comprehensive simulation models that integrate dynamic resource

allocation, load balancing, data transfer, and fault tolerance under various

operational conditions.

Simulation Model

The proposed simulation model consists of the following components:

1. Cloud Providers: Multiple cloud providers, each with a defined

capacity (total resources such as CPU, memory, etc.) and bandwidth.

Each cloud provider has an associated load and is capable of scaling

resources dynamically based on demand.

2. Load Balancer: A load balancing algorithm that distributes incoming

user requests across available cloud providers based on their current

 ISSUE 5 | December 2024

2nd
PART

29

 Simulation of an Intercloud Environment for Dynamic
Resource Allocation and Load Balancing

load and available resources. The algorithm considers factors such as

cloud provider capacity, available bandwidth, and the number of

concurrent user requests.

3. Data Transfer Mechanism: A simulation of data transfer between

cloud providers when resources are distributed across multiple clouds.

The transfer time is calculated based on the bandwidth of the cloud

providers and the size of the data to be transferred.

4. Fault Tolerance: A fault tolerance mechanism that simulates the

failure of a cloud provider and the redistribution of resources from

alternative providers.

5. User Requests: Multiple user requests arrive concurrently, and their

resource requirements are dynamically allocated to the most suitable

cloud provider.

Mathematical Model

The ICES simulation was developed using Java to model that represents

the key operations of the Intercloud environment with dynamic resource

allocation, load balancing, and fault tolerance. The following steps were

followed:

1. Cloud Providers Model

Each cloud provider 𝐶𝑖 was modeled with a specific capacity (e.g.,

available CPU resources and bandwidth). These cloud providers can

allocate, and release resources dynamically based on user demand.

2. Load Balancing Model

 A load balancing algorithm in a multi-cloud system was implemented to

distribute incoming user requests effectively based on available resources

and cloud provider load. The algorithm ensures that user requests are

routed to cloud providers with the lowest current load while considering

their bandwidth and resource availability. The aim is to minimize the

overall load on any single cloud provider while maximizing resource

utilization across all providers.

Let:

• 𝑁 be the total number of cloud providers in the Intercloud system.

• 𝐶𝑖 be the cloud provider 𝑖 (for 𝑖 =1, 2,…,N).

• 𝐿𝑖 be the load of cloud provider 𝑖, defined as the number of requests

currently being handled by that provider.

 ISSUE 5 | December 2024

2nd
PART

30

 Simulation of an Intercloud Environment for Dynamic
Resource Allocation and Load Balancing

• 𝑅𝑖 be the available resources (e.g., CPU, memory) of cloud

provider 𝑖.

• 𝑃𝑖 be the processing power of cloud provider 𝑖, i.e., the rate at

which resources are consumed by the cloud provider.

The load balancing algorithm will allocate incoming user

requests⁡⁡𝐿𝑖𝑛𝑐𝑜𝑚𝑖𝑛 to the cloud provider with the lowest load relative to its

available resources. The allocation rule can be expressed as:

𝐿𝑖 =

⁡⁡𝐿𝑖𝑛𝑐𝑜𝑚𝑖𝑛

𝑅𝑖
⁡⁡for each cloud provider

…

(1)

The incoming load 𝐿𝑖𝑛𝑐𝑜𝑚𝑖𝑛 is distributed in proportion to the available

resources 𝑅𝑖 of each cloud provider. Thus, cloud providers with higher

available resources will receive more requests, ensuring that the load is

balanced across the system.

The load balancing efficiency 𝐸𝑙𝑜𝑎𝑑 can be calculated as the inverse of

the difference between the maximum and minimum load values across the

providers:

𝐸𝑙𝑜𝑎𝑑 =⁡

⁡⁡1

max⁡(𝐿𝑖) − min⁡(𝐿𝑖)⁡

…

(2)

This efficiency measure quantifies how well the load is balanced across

the providers, with higher values indicating better balance.

3. Dynamic Resource Allocation Model

Cloud providers can scale their resources up or down based on workload

demands. When a provider's load reaches a threshold, additional resources

are allocated, and when demand decreases, resources are deallocated.

Therefore, the allocation of resources is dependent on the workload

demand and the available capacity of cloud providers. Each cloud provider

𝐶𝑖 can adjust its available resources dynamically.

Let:

• 𝐴𝑖(𝑡)⁡be the available resources of cloud provider 𝑖 at time 𝑡.

• 𝑇𝑖(𝑡)⁡ be the total resources of cloud provider 𝑖.

• 𝐿𝑖(𝑡)⁡ be the current load on provider 𝑖 at time 𝑡.

The dynamic resource allocation mechanism can scale resources based on

demand. The scaling function can be expressed as:

Δ𝐴𝑖(𝑡) = β⁡ ⋅ ⁡𝐿𝑖(𝑡)⁡⁡⁡⁡⁡𝑖𝑓⁡𝐿𝑖(𝑡) > α ⋅ 𝐿𝑖(𝑡)⁡

…

(3)

 ISSUE 5 | December 2024

2nd
PART

31

 Simulation of an Intercloud Environment for Dynamic
Resource Allocation and Load Balancing

Where:

• α is a threshold factor determining when the cloud should scale its

resources.

• β is a scaling factor that defines how much resources are added or

removed based on the load.

If the load 𝐿𝑖(𝑡)⁡ exceeds a threshold relative to the provider’s total

resources𝑻𝒊, the cloud provider increases its resources by𝛃⁡ ⋅ ⁡𝑳𝒊(𝒕).

Conversely, if the load is lower than the threshold, resources may be scaled

down to optimize resource utilization.

The total resource allocation 𝑅𝑡𝑜𝑡𝑎𝑙 across the entire Intercloud system at

time 𝑡 can be defined as the sum of available resources from all providers:

𝑅𝑡𝑜𝑡𝑎𝑙(𝑡) =∑𝐴𝑖(𝑡)⁡

𝑁

𝑖=1

…

(4)

4. Data Transfer Model

When resources are distributed across multiple cloud providers, data

transfer between them becomes a crucial part of the simulation. The rate

at which data is transferred depends on the bandwidth of the source and

destination clouds.

Let:

• 𝐵𝑠𝑜𝑢𝑟𝑐𝑒 be the bandwidth of the source cloud provider.

• 𝐵dest be the bandwidth of the destination cloud provider.

• 𝐷 be the data size to be transferred (in MB).

• 𝑇transfer be the transfer time between the two cloud providers.

The transfer rate is influenced by both the source and destination

bandwidth. The transfer time 𝑇transfer can be calculated as:

𝑇transfer =

⁡⁡𝐷

min⁡(𝐵𝑠𝑜𝑢𝑟𝑐𝑒,𝐵dest)⁡
 …(5)

Where:

• The data transfer rate is limited by the lower of the two bandwidths,

ensuring that the transfer speed is constrained by the slower link.

5. Fault Tolerance Model

 ISSUE 5 | December 2024

2nd
PART

32

 Simulation of an Intercloud Environment for Dynamic
Resource Allocation and Load Balancing

A failure simulation was implemented, where a cloud provider may fail,

and its workload is redistributed to other providers. The system ensures

that data integrity is maintained during this process. So, in the event of a

failure of a cloud provider, its workloads must be redistributed to other

available providers. The fault tolerance mechanism can be modeled as

follows:

Let:

• 𝐹𝑖 be the failure probability of cloud provider 𝑖 (where 0 ≤ 𝐹𝑖 ≤

10).

• 𝐿𝑖(𝑡) be the load on cloud provider 𝑖 at time 𝑡.

• 𝑅𝑖(𝑡) be the available resources of cloud provider 𝑖 at time 𝑡.

When a provider fails (i.e., Fi= 1), the load Li(t) is redistributed to the

remaining providers with available resources. The redistributed load

Lredistributed is expressed as in equation (6):

𝑳𝐫𝐞𝐝𝐢𝐬𝐭𝐫𝐢𝐛𝐮𝐭𝐞𝐝 =

𝐿𝑖(𝑡)

∑ 𝑅𝑗(𝑡)⁡
𝑁
𝑗=1,𝑗≠𝑖

 …(6)

Where:

The failed provider’s load is proportionally redistributed across all

remaining cloud providers based on their available resources. This helps

ensure that the system can adapt to failures without significant

performance degradation.

The system will continue to operate by rebalancing the load and

reallocating resources to maintain service continuity.

Simulation Scenarios

Multiple user requests are generated, and the system simulates their

processing by cloud providers. The system tracks the resource allocation,

load balancing, and data transfer processes. Performance metrics such as

total processing time, load balancing efficiency, and data transfer times are

collected.

The simulation was executed under various conditions, including different

numbers of concurrent user requests, varying cloud provider capacities,

and failure scenarios. Table (1) shows the screen shoot of resource request

parameters. In contrast, table (2) illustrates the cloud providers’

parameters.

 ISSUE 5 | December 2024

2nd
PART

33

 Simulation of an Intercloud Environment for Dynamic
Resource Allocation and Load Balancing

Table 1: Resource requests parameters

requestId RequestedResources requestedBandwidth userPriority

R1 100 500.0 200

R2 50 300.0 150

R3 120 600.0 250

R4 30 200.0 100

R5 200 1000.0 400

……… ……… ……… ………

R50

Table 2: cloud providers parameters

providerName availableResources bandwidth

CloudProviderA 1000 1000.0

CloudProviderB 500 1500.0

CloudProviderC 200 2000.0

The Flowchart in Figure (1) illustrates the sequence of steps the program

takes to simulate the intercloud environment, handle user requests, and

manage resources.

Key Steps:

1. Start: The program begins.

2. Create Cloud Providers: Initialize cloud providers with specific

capacities.

3. Create Load Balancer and IntercloudExchange: Set up the load

balancer to distribute requests and the intercloud exchange to

manage resource allocation.

4. Create Requests: Generate multiple user requests.

5. Execute Requests: Concurrently process each user request using

threads.

6. Resource Allocation: For each user request, try to allocate resources

from cloud providers.

7. Scaling and Failure Simulation: Simulate scaling of resources and

cloud provider failures.

8. Data Transfer Simulation: Transfer data between cloud providers as

needed.

9. End: The simulation ends

 ISSUE 5 | December 2024

2nd
PART

34

 Simulation of an Intercloud Environment for Dynamic
Resource Allocation and Load Balancing

Figure (1):

Flow diagram sequence of program steps

Results and Discussion

In this section, we present the results of the intercloud simulation and

provide a discussion on the implications, limitations, and potential

improvements of the system.

1. Cloud Provider Resource Allocation

The simulation demonstrated that the resource allocation system works

effectively with multiple cloud providers. By leveraging a round-robin

approach for load balancing, the system distributed user requests among

the three cloud providers (CloudProviderA, CloudProviderB, and

CloudProviderC). The resources were allocated efficiently when a

provider had enough available capacity. The synchronous allocation

mechanism (allocateResources method in CloudProvider.java) ensured

thread safety during concurrent user requests.

Key Observations:

• Efficient Resource Utilization: Cloud providers with larger

capacities (CloudProviderA with 1000 resources) handled more

requests, while smaller providers (CloudProviderC with 200

resources) were utilized less frequently.

• Failure Handling: The simulateFailure method demonstrated the

system's ability to handle cloud provider failures. When a cloud

 ISSUE 5 | December 2024

2nd
PART

35

 Simulation of an Intercloud Environment for Dynamic
Resource Allocation and Load Balancing

provider failed, the system ensured that resources were not

allocated from the unavailable provider, and user requests were

redirected to available providers. This behavior ensured high

availability and resiliency in the system.

2. Concurrency Management

The use of Java’s ExecutorService allowed for efficient concurrent

handling of user requests. The system successfully managed 50

simultaneous requests, demonstrating the scalability of the architecture.

By wrapping user requests as Callable tasks (UserRequestCallable), we

enabled non-blocking execution and ensured that each request was

processed asynchronously.

Key Observations:

• Thread Pool Efficiency: The FixedThreadPool with 50 threads

was able to process all requests concurrently without significant

delays. The system maintained optimal throughput, processing

multiple user requests in parallel, which is essential for cloud

environments handling high request volumes.

• Thread Safety: The synchronized keyword in the

allocateResources method of CloudProvider ensured that race

conditions were avoided when allocating resources. However, this

could result in performance bottlenecks under extreme load, as

resource allocation could be delayed by contention for the lock.

3. Load Balancing Mechanism

The round-robin load balancing approach employed by the LoadBalancer

class distributed the incoming user requests evenly across cloud providers.

This approach ensured that no single cloud provider was overwhelmed by

requests, optimizing the system’s overall resource utilization.

Key Observations:

• Balanced Distribution: The load balancer efficiently rotated

through the list of cloud providers, allocating resources based on

the order of cloud providers. However, a more sophisticated load-

balancing algorithm (e.g., weighted round-robin or least-

connections) could improve efficiency by considering the available

resources and the demand for each provider.

 ISSUE 5 | December 2024

2nd
PART

36

 Simulation of an Intercloud Environment for Dynamic
Resource Allocation and Load Balancing

• Resource Imbalance: Despite the round-robin approach, resource

utilization remained suboptimal in scenarios where certain cloud

providers had higher available resources compared to others. A

dynamic load balancing algorithm that adapts to available

resources could further optimize allocation.

4. Intercloud Resource Allocation

The IntercloudExchange class was responsible for allocating resources

across cloud providers. It iterated through the list of cloud providers to find

the first one with enough available resources to fulfill a user request.

Key Observations:

• Efficient Resource Fulfillment: In most cases, the system was

able to allocate resources successfully across the cloud providers,

showcasing the ability of the system to operate in a multi-cloud

environment.

• Limited Allocation Strategy: The simple resource allocation

mechanism does not consider the cloud provider’s specific

characteristics (e.g., available bandwidth, user priority, or failure

state). More sophisticated strategies (e.g., considering priority or

load) could improve resource allocation, especially when some

providers are heavily loaded or have insufficient resources.

5. Scalability and Fault Tolerance

The simulation also demonstrated the scalability and fault tolerance of the

intercloud system. The scaleResources method allowed each cloud

provider to randomly scale up or down, simulating how cloud providers

adjust to changing workloads. Additionally, the fault tolerance

mechanism, where cloud providers can go down and later restore service,

was crucial for ensuring the system’s resilience. Table (3) shows the

resource allocation when a cloud provider (e.g., CloudProviderA) fails. In

this scenario, one can observe that requests R4 and R6 could not be

allocated due to the failure of CloudProviderA.

Key Observations:

• Scaling Behavior: The scaling logic allowed cloud providers to

dynamically adjust their resource pools. While this was a

simplified mechanism (random scaling), it showed that the system

could adapt to changing cloud resources. A more realistic scaling

 ISSUE 5 | December 2024

2nd
PART

37

 Simulation of an Intercloud Environment for Dynamic
Resource Allocation and Load Balancing

model could incorporate factors such as workload patterns, demand

predictions, and cost-efficiency.

• Failure Recovery: When a cloud provider failed, it was marked as

unavailable, and resources were not allocated to it. Once restored,

it resumed operation. This demonstrated the system’s ability to

tolerate failures without impacting the overall resource allocation

process, enhancing the system's reliability.

Table 3: Cloud Provider Failure Scenario

Request ID
Requested

Resources

Allocated to

Cloud

Provider

Status

R1 100 CloudProviderA Allocated

R2 50 CloudProviderB Allocated

R3 120 CloudProviderC Allocated

R4 30 CloudProviderA Failed

R5 200 CloudProviderB Allocated

R6 150 CloudProviderA Failed

R7 80 CloudProviderC Allocated

R8 60 CloudProviderB Allocated

...

R50 100 CloudProviderC Allocated

6. Data Transfer Simulation

The DataTransfer class simulated data movement between cloud

providers. Although this was a basic simulation, it illustrated the potential

for intercloud data migration and the need for careful resource planning

and optimization to minimize data transfer costs and latency. Table (4)

demonstrates how cloud providers handle multiple failures and recovery

processes during the simulation.

 ISSUE 5 | December 2024

2nd
PART

38

 Simulation of an Intercloud Environment for Dynamic
Resource Allocation and Load Balancing

Table 4: Cloud Provider Failure and Recovery

Request ID

Allocated to

Cloud

Provider

Status

R1 CloudProviderA Active

R2 CloudProviderB Active

R3 CloudProviderC Active

R4 CloudProviderA Failed

R5 CloudProviderB Active

R6 CloudProviderA Failed

R7 CloudProviderC Active

R8 CloudProviderB Active

R9 CloudProviderA Failed

R10 CloudProviderC Active

...

R50 CloudProviderB Active

CloudProviderA

Status Restored
 Restored

CloudProviderB

Status Restored
 Restored

Key Observations:

• Data Transfer Latency: The simulated data transfer introduced a

delay, showcasing the potential impact of network latency on cloud

operations. In a real-world system, factors such as bandwidth,

network congestion, and data size would need to be considered

when designing the intercloud exchange and optimizing data

transfer routes.

• Transfer Cost and Efficiency: Data transfer between cloud

providers can incur significant costs. An optimization mechanism

that selects the most efficient path for data transfer (considering

bandwidth, cost, and latency) could reduce operational expenses in

real-world systems.

 ISSUE 5 | December 2024

2nd
PART

39

 Simulation of an Intercloud Environment for Dynamic
Resource Allocation and Load Balancing

Conclusion and Recommendations

The intercloud simulation successfully demonstrated the viability of an

intercloud resource management system that balances user requests,

handles cloud failures, and simulates dynamic resource scaling. The

system was able to efficiently allocate resources and ensure high

availability by using load balancing and fault tolerance techniques.

However, several challenges remain. For instance, while the load

balancing algorithm performed well in most scenarios; further

optimization could be done to account for factors such as network latency,

storage capacity, and regional availability. Additionally, the fault tolerance

mechanism could be extended to simulate more complex failure scenarios,

such as network partitions or partial cloud outages.

However, there are several areas where the system could be enhanced:

• Advanced Load Balancing: Implementing weighted load

balancing or other intelligent algorithms based on resource

availability, user priority, and provider capacity could improve

efficiency.

• Resource Allocation Strategy: A more complex allocation

strategy that considers provider state, resource utilization, and user

priority could further optimize performance.

• Realistic Scaling and Fault Tolerance: Introducing more realistic

scaling behaviors and fault tolerance mechanisms could enhance

the system’s adaptability to real-world cloud environment

Future Work

Future work will focus on enhancing the simulation by incorporating the

following features:

1. Advanced Load Balancing: Investigate more sophisticated load

balancing techniques, such as multi-objective optimization, to

consider factors like network latency, regional availability, and

resource usage patterns.

2. Cloud Resource Heterogeneity: Model cloud providers with

heterogeneous resources, such as different types of virtual

machines or storage solutions, to better reflect real-world multi-

cloud environments.

 ISSUE 5 | December 2024

2nd
PART

40

 Simulation of an Intercloud Environment for Dynamic
Resource Allocation and Load Balancing

3. Scalability and Performance: Evaluate the performance of the

simulation under more extensive workloads, including thousands

of concurrent user requests and the scaling of cloud providers.

4. Energy Efficiency: Incorporate energy consumption models to

evaluate the environmental impact of cloud resource allocation and

load balancing strategies.

5. Integration with Real-World Systems: Extend the simulation to

integrate with real-world cloud environments, providing a more

realistic and practical approach to Intercloud modeling.

By incorporating these improvements, the simulation can evolve into a

comprehensive tool for research and optimization in Intercloud

environments.

References

[1] Qian, L., Luo, Z., Du, Y., Guo, L. (2009). Cloud Computing: An

Overview. In: Jaatun, M.G., Zhao, G., Rong, C. (eds) Cloud

Computing. CloudCom 2009. Lecture Notes in Computer

Science, vol 5931. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-10665-1_63

[2] M. N. O. Sadiku, S. M. Musa and O. D. Momoh, "Cloud

Computing: Opportunities and Challenges," in IEEE Potentials,

vol. 33, no. 1, pp. 34-36, Jan.-Feb. 2014, doi:

10.1109/MPOT.2013.2279684.

[3] Adel Nadjaran Toosi, Rodrigo N. Calheiros,and Rajkumar Buyya,

Interconnected Cloud Computing Environments: Challenges,

Taxonomy, and Survey, Vol. 47, No. 1,(2014)

[4] Yang, Y., He, Z., & Liu, D. (2012). Hybrid cloud computing

architecture for resource allocation using multi-agent system.

International Journal of Cloud Computing and Services Science.

[5] Sahu, S., Bhoi, A., & Awasthi, L. (2017). Load balancing in

multi-cloud computing using dynamic resource allocation.

Journal of Cloud Computing.

[6] Ranjan, D., Kato, H., & De Moura, M. (2020). Fault-tolerant

architectures for Intercloud environments. IEEE Transactions on

Cloud Computing.

https://dl.acm.org/doi/10.1145/2593512
https://dl.acm.org/doi/10.1145/2593512
https://dl.acm.org/doi/10.1145/2593512
https://dl.acm.org/toc/csur/2014/47/1

 ISSUE 5 | December 2024

2nd
PART

41

 Simulation of an Intercloud Environment for Dynamic
Resource Allocation and Load Balancing

[7] E. Emary, Hossam M. Zawbaa, Crina Grosan, and Abul Ella

Hassenian: Feature Subset Selection Approach by Grey-Wolf

Optimization. Industrial Advancement, Springer International

Publishing,Vol. 63.2015 pp. 1-13

[8] R.C. Eberhart and J.Kennedy: A New Optimizer Using Particle

Swarm Theory. Micro Machine and Human Science, Vol. 1,

1995, pp. 39-43

[9] Mousavi, Seyedmajid & Mosavi, Amir & Varkonyi-Koczy,

Annamaria & Fazekas, Gabor. (2017). Dynamic Resource

Allocation in Cloud Computing. Acta Polytechnica Hungarica.

14.

	Simulation of an Intercloud Environment for Dynamic Resource Allocation and Load Balancing

